Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.299
1.
Transl Psychiatry ; 14(1): 200, 2024 May 07.
Article En | MEDLINE | ID: mdl-38714646

Lithium is an effective augmenting agent for depressed patients with inadequate response to standard antidepressant therapy, but numerous adverse effects limit its use. We previously reported that a lithium-mimetic agent, ebselen, promoted a positive emotional bias-an indicator of potential antidepressant activity in healthy participants. We therefore aimed to investigate the effects of short-term ebselen treatment on emotional processing and brain neurochemistry in depressed patients with inadequate response to standard antidepressants. We conducted a double-blind, placebo-controlled 7-day experimental medicine study in 51 patients with major depressive disorder who were currently taking antidepressants but had an inadequate response to treatment. Participants received either ebselen 600 mg twice daily for seven days or identical matching placebo. An emotional testing battery, magnetic resonance spectroscopy and depression and anxiety rating scales were conducted at baseline and after seven days of treatment. Ebselen did not increase the recognition of positive facial expressions in the depressed patient group. However, ebselen increased the response bias towards fear emotion in the signal detection measurement. In the anterior cingulate cortex, ebselen significantly reduced the concentrations of inositol and Glx (glutamate+glutamine). We found no significant differences in depression and anxiety rating scales between visits. Our study did not find any positive shift in emotional bias in depressed patients with an inadequate response to antidepressant medication. We confirmed the ability of ebselen to lower inositol and Glx in the anterior cingulate cortex. These latter effects are probably mediated through inhibition of inositol monophosphatase and glutaminase respectively.


Antidepressive Agents , Azoles , Depressive Disorder, Major , Emotions , Isoindoles , Organoselenium Compounds , Humans , Female , Male , Organoselenium Compounds/pharmacology , Double-Blind Method , Adult , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Middle Aged , Emotions/drug effects , Azoles/pharmacology , Magnetic Resonance Spectroscopy , Depressive Disorder, Treatment-Resistant/drug therapy , Depressive Disorder, Treatment-Resistant/metabolism , Gyrus Cinguli/metabolism , Gyrus Cinguli/drug effects , Gyrus Cinguli/diagnostic imaging , Brain/drug effects , Brain/metabolism , Brain/diagnostic imaging
2.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731487

The wheat scab caused by Fusarium graminearum (F. graminearum) has seriously affected the yield and quality of wheat in China. In this study, gallic acid (GA), a natural polyphenol, was used to synthesize three azole-modified gallic acid derivatives (AGAs1-3). The antifungal activity of GA and its derivatives against F. graminearum was studied through mycelial growth rate experiments and field efficacy experiments. The results of the mycelial growth rate test showed that the EC50 of AGAs-2 was 0.49 mg/mL, and that of AGAs-3 was 0.42 mg/mL. The biological activity of AGAs-3 on F. graminearum is significantly better than that of GA. The results of field efficacy tests showed that AGAs-2 and AGAs-3 significantly reduced the incidence rate and disease index of wheat scab, and the control effect reached 68.86% and 72.11%, respectively. In addition, preliminary investigation was performed on the possible interaction between AGAs-3 and F. graminearum using density functional theory (DFT). These results indicate that compound AGAs-3, because of its characteristic of imidazolium salts, has potential for use as a green and environmentally friendly plant-derived antifungal agent for plant pathogenic fungi.


Antifungal Agents , Azoles , Fusarium , Gallic Acid , Triticum , Fusarium/drug effects , Fusarium/growth & development , Gallic Acid/chemistry , Gallic Acid/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Triticum/microbiology , Azoles/pharmacology , Azoles/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Microbial Sensitivity Tests
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732115

Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties of these antiviral drugs on a phosphorene single-layer. To further investigate these characteristics, this study employs four distinct machine learning models-Random Forest, Gradient Boosting, XGBoost, and CatBoost. The Hamiltonian of antiviral molecules within a monolayer of phosphorene is appropriately trained. The key aspect of utilizing machine learning (ML) in drug design revolves around training models that are efficient and precise in approximating density functional theory (DFT). Furthermore, the study employs SHAP (SHapley Additive exPlanations) to elucidate model predictions, providing insights into the contribution of each feature. To explore the interaction characteristics and thermodynamic properties of the hybrid drug, we employ molecular dynamics and DFT calculations in a vacuum interface. Our findings suggest that this functionalized 2D complex exhibits robust thermostability, indicating its potential as an effective and enabled entity. The observed variations in free energy at different surface charges and temperatures suggest the adsorption potential of FP and EB molecules from the surrounding environment.


Antiviral Agents , Machine Learning , Molecular Dynamics Simulation , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Density Functional Theory , Thermodynamics , Isoindoles/chemistry , Organoselenium Compounds/chemistry , Organoselenium Compounds/pharmacology , Azoles/chemistry , Azoles/pharmacology
4.
Appl Environ Microbiol ; 90(4): e0178223, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38557086

Aspergillus fumigatus is an important global fungal pathogen of humans. Azole drugs are among the most effective treatments for A. fumigatus infection. Azoles are also widely used in agriculture as fungicides against fungal pathogens of crops. Azole-resistant A. fumigatus has been increasing in Europe and Asia for two decades where clinical resistance is thought to be driven by agricultural use of azole fungicides. The most prevalent mechanisms of azole resistance in A. fumigatus are tandem repeats (TR) in the cyp51A promoter coupled with mutations in the coding region which result in resistance to multiple azole drugs (pan-azole resistance). Azole-resistant A. fumigatus has been isolated from patients in the United States (U.S.), but little is known about its environmental distribution. To better understand the distribution of azole-resistant A. fumigatus in the U.S., we collected isolates from agricultural sites in eight states and tested 202 isolates for sensitivity to azoles. We found azole-resistant A. fumigatus in agricultural environments in seven states showing that it is widespread in the U.S. We sequenced environmental isolates representing the range of U.S. sample sites and compared them with publicly available environmental worldwide isolates in phylogenetic, principal component, and ADMIXTURE analyses. We found worldwide isolates fell into three clades, and TR-based pan-azole resistance was largely in a single clade that was strongly associated with resistance to multiple agricultural fungicides. We also found high levels of gene flow indicating recombination between clades highlighting the potential for azole-resistance to continue spreading in the U.S.IMPORTANCEAspergillus fumigatus is a fungal pathogen of humans that causes over 250,000 invasive infections each year. It is found in soils, plant debris, and compost. Azoles are the first line of defense antifungal drugs against A. fumigatus. Azoles are also used as agricultural fungicides to combat other fungi that attack plants. Azole-resistant A. fumigatus has been a problem in Europe and Asia for 20 years and has recently been reported in patients in the United States (U.S.). Until this study, we did not know much about azole-resistant A. fumigatus in agricultural settings in the U.S. In this study, we isolated azole-resistant A. fumigatus from multiple states and compared it to isolates from around the world. We show that A. fumigatus which is resistant to azoles and to other strictly agricultural fungicides is widespread in the U.S.


Aspergillus fumigatus , Fungicides, Industrial , Humans , United States , Fungicides, Industrial/pharmacology , Azoles/pharmacology , Phylogeny , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Fungal Proteins/genetics , Microbial Sensitivity Tests
5.
BMC Microbiol ; 24(1): 111, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570761

BACKGROUND: Aspergillus species cause a variety of serious clinical conditions with increasing trend in antifungal resistance. The present study aimed at evaluating hospital epidemiology and antifungal susceptibility of all isolates recorded in our clinical database since its implementation. METHODS: Data on date of isolation, biological samples, patients' age and sex, clinical settings, and antifungal susceptibility tests for all Aspergillus spp. isolated from 2015 to 2022 were extracted from the clinical database. Score test for trend of odds, non-parametric Mann Kendall trend test and logistic regression analysis were used to analyze prevalence, incidence, and seasonality of Aspergillus spp. isolates. RESULTS: A total of 1126 Aspergillus spp. isolates were evaluated. A. fumigatus was the most prevalent (44.1%) followed by A. niger (22.3%), A. flavus (17.7%) and A. terreus (10.6%). A. niger prevalence increased over time in intensive care units (p-trend = 0.0051). Overall, 16 (1.5%) were not susceptible to one azole compound, and 108 (10.9%) to amphotericin B, with A. niger showing the highest percentage (21.9%). The risk of detecting A. fumigatus was higher in June, (OR = 2.14, 95% CI [1.16; 3.98] p = 0.016) and reduced during September (OR = 0.48, 95% CI [0.27; 0.87] p = 0.015) and October as compared to January (OR = 0.39, 95% CI [0.21; 0.70] p = 0.002. A. niger showed a reduced risk of isolation from all clinical samples in the month of June as compared to January (OR = 0.34, 95% CI [0.14; 0.79] p = 0.012). Seasonal trend for A. flavus showed a higher risk of detection in September (OR = 2.7, 95% CI [1.18; 6.18] p = 0.019), October (OR = 2.32, 95% CI [1.01; 5.35] p = 0.048) and November (OR = 2.42, 95% CI [1.01; 5.79] p = 0.047) as compared to January. CONCLUSIONS: This is the first study to analyze, at once, data regarding prevalence, time trends, seasonality, species distribution and antifungal susceptibility profiles of all Aspergillus spp. isolates over a 8-year period in a tertiary care center. Surprisingly no increase in azole resistance was observed over time.


Antifungal Agents , Aspergillosis , Humans , Antifungal Agents/pharmacology , Tertiary Care Centers , Aspergillosis/epidemiology , Aspergillosis/microbiology , Microbial Sensitivity Tests , Aspergillus , Azoles , Drug Resistance, Fungal
6.
Environ Sci Pollut Res Int ; 31(20): 29148-29161, 2024 Apr.
Article En | MEDLINE | ID: mdl-38568307

The global occurrence of micropollutants in water bodies has raised concerns about potential negative effects on aquatic ecosystems and human health. EU regulations to mitigate such widespread pollution have already been implemented and are expected to become increasingly stringent in the next few years. Catalytic wet peroxide oxidation (CWPO) has proved to be a promising alternative for micropollutant removal from water, but most studies were performed in batch mode, often involving complex, expensive, and hardly recoverable catalysts, that are prone to deactivation. This work aims to demonstrate the feasibility of a fixed-bed reactor (FBR) packed with natural magnetite powder for the removal of a representative mixture of azole pesticides, recently listed in the EU Watch Lists. The performance of the system was evaluated by analyzing the impact of H2O2 dose (3.6-13.4 mg L-1), magnetite load (2-8 g), inlet flow rate (0.25-1 mL min-1), and initial micropollutant concentration (100-1000 µg L-1) over 300 h of continuous operation. Azole pesticide conversion values above 80% were achieved under selected operating conditions (WFe3O4 = 8 g, [H2O2]0 = 6.7 mg L-1, flow rate = 0.5 mL min-1, pH0 = 5, T = 25 °C). Notably, the catalytic system showed a high stability upon 500 h in operation, with limited iron leaching (< 0.1 mg L-1). As a proof of concept, the feasibility of the system was confirmed using a real wastewater treatment plant (WWTP) effluent spiked with the mixture of azole pesticides. These results represent a clear advance for the application of CWPO as a tertiary treatment in WWTPs and open the door for the scale-up of FBR packed with natural magnetite.


Ferrosoferric Oxide , Pesticides , Water Pollutants, Chemical , Catalysis , Water Pollutants, Chemical/chemistry , Ferrosoferric Oxide/chemistry , Hydrogen Peroxide/chemistry , Oxidation-Reduction , Azoles/chemistry
7.
Sci Total Environ ; 923: 171189, 2024 May 01.
Article En | MEDLINE | ID: mdl-38447726

Antifungal resistance has emerged as a significant health concern with increasing reports of resistant variants in previously susceptible species. At present, little is known about occupational exposure to antifungal-resistant fungi. This study aimed to investigate Danish workers' occupational exposure to airborne fungi resistant to first-line treatment drugs. A retrospective study was performed on a unique collection of personal exposure samples gathered over a twenty-year period from Danish working environments, in sectors including agriculture, animal handling, waste management, and healthcare. A total of 669 samples were cultivated at 37 °C and fungal colonies were identified using MALDI-TOF MS. Subsequently, identification was confirmed by amplicon sequencing the genes of calmodulin and beta-tubulin to unveil potential cryptic species. Infectious fungi (495 isolates from 23 species) were tested for resistance against Itraconazole, Voriconazole, Posaconazole, and Amphotericin B. Working environments were highly variable in the overall fungal exposure, and showed vastly different species compositions. Resistance was found in 30 isolates of the species Aspergillus fumigatus (4 of 251 isolates), A. nidulans (2 of 13), A. niger complex (19 of 131), A. versicolor (3 of 18), and A. lentulus (2 of 2). Sequence analysis revealed several cryptic species within the A. niger complex including A. tubingensis, A. luchuensis, and A. phoenicis. Among the resistant A. fumigatus isolates, two contained the well-described TR34/L98H mutation in the cyp51A gene and promoter region, while the remainder harbored silent mutations. The results indicate that the working environment significantly contributes to exposure to resistant fungi, with particularly biofuel plant workers experiencing high exposure. Differences in the prevalence of resistance across working environments may be linked to the underlying species composition.


Antifungal Agents , Fungal Proteins , Antifungal Agents/pharmacology , Retrospective Studies , Fungal Proteins/genetics , Fungi , Itraconazole , Aspergillus fumigatus , Microbial Sensitivity Tests , Azoles
8.
Sci Total Environ ; 923: 171475, 2024 May 01.
Article En | MEDLINE | ID: mdl-38453063

Climbazole is an azole biocide that has been widely used in formulations of personal care products. Climbazole can cause developmental toxicity and endocrine disruption as well as gut disturbance in aquatic organisms. However, the mechanisms behind gut toxicity induced by climbazole still remain largely unclear in fish. Here, we evaluate the gut effects by exposing grass carp (Ctenopharyngodon idella) to climbazole at levels ranging from 0.2 to 20 µg/L for 42 days by evaluating gene transcription and expression, biochemical analyses, correlation network analysis, and molecular docking. Results showed that climbazole exposure increased cyp1a mRNA expression and ROS level in the three treatment groups. Climbazole also inhibited Nrf2 and Keap1 transcripts as well as proteins, and suppressed the transcript levels of their subordinate antioxidant molecules (cat, sod, and ho-1), increasing oxidative stress. Additionally, climbazole enhanced NF-κB and iκBα transcripts and proteins, and the transcripts of NF-κB downstream pro-inflammatory factors (tnfα, and il-1ß/6/8), leading to inflammation. Climbazole increased pro-apoptosis-related genes (fadd, bad1, and caspase3), and decreased anti-apoptosis-associated genes (bcl2, and bcl-xl), suggesting a direct reaction to apoptosis. The molecular docking data showed that climbazole could form stable hydrogen bonds with CYP1A. Mechanistically, our findings suggested that climbazole can induce inflammation and oxidative stress through CYP450s/ROS/Nrf2/NF-κB pathways, resulting in cell apoptosis in the gut of grass carp.


Carps , Dietary Supplements , Imidazoles , Animals , Dietary Supplements/analysis , Diet , NF-kappa B , Kelch-Like ECH-Associated Protein 1/metabolism , Immunity, Innate , Azoles/toxicity , NF-E2-Related Factor 2/metabolism , Molecular Docking Simulation , Reactive Oxygen Species/metabolism , Signal Transduction , Fish Proteins/genetics , Fish Proteins/metabolism , Inflammation/chemically induced , Inflammation/veterinary , Oxidative Stress , Apoptosis , Carps/metabolism
9.
Mycoses ; 67(4): e13719, 2024 Apr.
Article En | MEDLINE | ID: mdl-38551063

BACKGROUND: Surveillance studies are crucial for updating trends in Aspergillus species and antifungal susceptibility information. OBJECTIVES: Determine the Aspergillus species distribution and azole resistance prevalence during this 3-year prospective surveillance study in a Spanish hospital. MATERIALS AND METHODS: Three hundred thirty-five Aspergillus spp. clinical and environmental isolates were collected during a 3-year study. All isolates were screened for azole resistance using an agar-based screening method and resistance was confirmed by EUCAST antifungal susceptibility testing. The azole resistance mechanism was confirmed by sequencing the cyp51A gene and its promoter. All Aspergillus fumigatus strains were genotyped using TRESPERG analysis. RESULTS: Aspergillus fumigatus was the predominant species recovered with a total of 174 strains (51.94%). The rest of Aspergillus spp. were less frequent: Aspergillus niger (14.93%), Aspergillus terreus (9.55%), Aspergillus flavus (8.36%), Aspergillus nidulans (5.37%) and Aspergillus lentulus (3.28%), among other Aspergillus species (6.57%). TRESPERG analysis showed 99 different genotypes, with 72.73% of the strains being represented as a single genotype. Some genotypes were common among clinical and environmental A. fumigatus azole-susceptible strains, even when isolated months apart. We describe the occurrence of two azole-resistant A. fumigatus strains, one clinical and another environmental, that were genotypically different and did not share genotypes with any of the azole-susceptible strains. CONCLUSIONS: Aspergillus fumigatus strains showed a very diverse population although several genotypes were shared among clinical and environmental strains. The isolation of azole-resistant strains from both settings suggest that an efficient analysis of clinical and environmental sources must be done to detect azole resistance in A. fumigatus.


Aspergillosis , Aspergillus nidulans , Humans , Azoles/pharmacology , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillosis/microbiology , Prevalence , Prospective Studies , Drug Resistance, Fungal , Aspergillus fumigatus , Hospitals , Fungal Proteins/genetics , Microbial Sensitivity Tests
10.
Appl Environ Microbiol ; 90(4): e0001724, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38534143

The emergence of azole-resistant Aspergillus fumigatus (ARAf) across the world is an important public health concern. We sought to determine if propiconazole, a demethylase inhibitor (DMI) fungicide, exerted a selective pressure for ARAf in a tomato production environment following multiple exposures to the fungicide. A tomato field trial was established in 2019 and propiconazole was applied weekly until harvest. Soil, leaf, and fruit (when present) samples were collected at baseline and after each propiconazole application. A. fumigatus isolates (n, 178) were recovered and 173 were tested for susceptibility to itraconazole, posaconazole, voriconazole, and propiconazole in accordance with CLSI M38 guidelines. All the isolates were susceptible to medical triazoles and the propiconazole MIC ranged from 0.25 to 8 mg/L. A linear regression model was fitted that showed no longitudinal increment in the log2-fold azole MIC of the isolates collected after each propiconazole exposure compared to the baseline isolates. AsperGenius real-time multiplex assay ruled out TR34/L98H and TR46/Y121F/T289A cyp51A resistance markers in these isolates. Sequencing of a subset of isolates (n, 46) demonstrated widespread presence of F46Y/M172V/E427K and F46Y/M172V/N248T/D255E/E427K cyp51A mutations previously associated with reduced susceptibility to triazoles. IMPORTANCE: The agricultural use of azole fungicides to control plant diseases has been implicated as a major contributor to ARAf infections in humans. Our study did not reveal imposition of selection pressure for ARAf in a vegetable production system. However, more surveillance studies for ARAf in food crop production and other environments are warranted in understanding this public and One Health issue.


Fungicides, Industrial , Solanum lycopersicum , Humans , Aspergillus fumigatus/genetics , Azoles/pharmacology , Antifungal Agents/pharmacology , Fungal Proteins/genetics , Drug Resistance, Fungal/genetics , Triazoles/pharmacology , Fungicides, Industrial/pharmacology , Vegetables , Microbial Sensitivity Tests
11.
Commun Biol ; 7(1): 274, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38486002

Aspergillus fumigatus is a pathogenic fungus with a global distribution. The emergence of azole-resistant A. fumigatus (ARAf) other than the TR-mutants is a problem in Japan. Additionally, the genetic diversity of A. fumigatus strains in Japan remains relatively unknown. Here we show the diversity in the A. fumigatus strains isolated in Japan as well as the complexity in the global distribution of the pathogenic strains. First, we analyzed the genome sequences of 171 strains from Japan as well as the antifungal susceptibility of these strains. Next, we conducted a population analysis of 876 strains by combining the available genomic data for strains isolated worldwide, which were grouped in six clusters. Finally, a genome-wide association study identified the genomic loci associated with ARAf strains, but not the TR-mutants. These results highlight the complexity of the genomic mechanism underlying the emergence of ARAf strains other than the TR-mutants.


Aspergillus fumigatus , Azoles , Aspergillus fumigatus/genetics , Azoles/pharmacology , Genome-Wide Association Study , Japan , Drug Resistance, Fungal/genetics , Genomics
12.
Sci Rep ; 14(1): 6156, 2024 03 14.
Article En | MEDLINE | ID: mdl-38486086

Black Aspergillus species are the most common etiological agents of otomycosis, and pulmonary aspergillosis. However, limited data is available on their antifungal susceptibility profiles and associated resistance mechanisms. Here, we determined the azole susceptibility profiles of black Aspergillus species isolated from the Indian environment and explored the potential resistance mechanisms through cyp51A gene sequencing, protein homology modeling, and expression analysis of selected genes cyp51A, cyp51B, mdr1, and mfs based on their role in imparting resistance against antifungal drugs. In this study, we have isolated a total of 161 black aspergilli isolates from 174 agricultural soil samples. Isolates had variable resistance towards medical azoles; approximately 11.80%, 3.10%, and 1.24% of isolates were resistant to itraconazole (ITC), posaconazole (POS), and voriconazole (VRC), respectively. Further, cyp51A sequence analysis showed that non-synonymous mutations were present in 20 azole-resistant Aspergillus section Nigri and 10 susceptible isolates. However, Cyp51A homology modeling indicated insignificant protein structural variations because of these mutations. Most of the isolates showed the overexpression of mdr1, and mfs genes. Hence, the study concluded that azole-resistance in section Nigri cannot be attributed exclusively to the cyp51A gene mutation or its overexpression. However, overexpression of mdr1 and mfs genes may have a potential role in drug resistance.


Antifungal Agents , Aspergillosis , Antifungal Agents/pharmacology , Azoles/pharmacology , Aspergillosis/microbiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Drug Resistance, Fungal/genetics , Aspergillus/metabolism , Mutation , Gene Expression
13.
Sci Rep ; 14(1): 6285, 2024 03 15.
Article En | MEDLINE | ID: mdl-38491078

Resistance to fungicides is a global challenge as target proteins under selection can evolve rapidly, reducing fungicide efficacy. To manage resistance, detection technologies must be fast and flexible enough to cope with a rapidly increasing number of mutations. The most important agricultural fungicides are azoles that target the ergosterol biosynthetic enzyme sterol 14α-demethylase (CYP51). Mutations associated with azole resistance in the Cyp51 promoter and coding sequence can co-occur in the same allele at different positions and codons, increasing the complexity of resistance detection. Resistance mutations arise rapidly and cannot be detected using traditional amplification-based methods if they are not known. To capture the complexity of azole resistance in two net blotch pathogens of barley we used the Oxford Nanopore MinION to sequence the promoter and coding sequence of Cyp51A. This approach detected all currently known mutations from biologically complex samples increasing the simplicity of resistance detection as multiple alleles can be profiled in a single assay. With the mobility and decreasing cost of long read sequencing, we demonstrate this approach is broadly applicable for characterizing resistance within known agrochemical target sites.


Ascomycota , Fungicides, Industrial , Fungicides, Industrial/pharmacology , Azoles , Ascomycota/metabolism , Mutation , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Fungal Proteins/genetics , Fungal Proteins/metabolism
14.
Med Mycol ; 62(4)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38521982

Our understanding of fungal epidemiology and the burden of antifungal drug resistance in COVID-19-associated candidemia (CAC) patients is limited. Therefore, we conducted a retrospective multicenter study in Iran to explore clinical and microbiological profiles of CAC patients. Yeast isolated from blood, were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and subjected to antifungal susceptibility testing (AFST) using the broth microdilution method M27-A3 protocol. A total of 0.6% of the COVID-19 patients acquired CAC (43/6174). Fluconazole was the most widely used antifungal, and 37% of patients were not treated. Contrary to historic candidemia patients, Candida albicans and C. tropicalis were the most common species. In vitro resistance was high and only noted for azoles; 50%, 20%, and 13.6% of patients were infected with azole-non-susceptible (ANS) C. tropicalis, C. parapsilosis, and C. albicans isolates, respectively. ERG11 mutations conferring azole resistance were detected for C. parapsilosis isolates (Y132F), recovered from an azole-naïve patient. Our study revealed an unprecedented rise in ANS Candida isolates, including the first C. parapsilosis isolate carrying Y132F, among CAC patients in Iran, which potentially threatens the efficacy of fluconazole, the most widely used drug in our centers. Considering the high mortality rate and 37% of untreated CAC cases, our study underscores the importance of infection control strategies and antifungal stewardship to minimize the emergence of ANS Candida isolates during COVID-19.


COVID-19 , Candidemia , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candidemia/drug therapy , Candidemia/epidemiology , Candidemia/microbiology , Candidemia/veterinary , Fluconazole/therapeutic use , Azoles/pharmacology , Azoles/therapeutic use , Microbial Sensitivity Tests/veterinary , COVID-19/epidemiology , COVID-19/veterinary , Candida , Candida albicans , Candida tropicalis , Candida parapsilosis , Drug Resistance, Fungal
15.
Neurosci Lett ; 828: 137750, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38548219

Azoles such as nafimidone, denzimol and loreclezole are known for their clinical efficacy against epilepsy, and loreclezole acts by potentiating γ-aminobutyric acid (GABA)-ergic currents. In the current study, we report a series of azole derivatives in alcohol ester and oxime ester structure showing promising anticonvulsant effects in 6 Hz and maximal electro shock (MES) models with minimal toxicity. The most promising of the series, 5f, was active in both 6 Hz and MES tests with a median effective dose (ED50) of 118.92 mg/kg in 6 Hz test and a median toxic dose (TD50) twice as high in mice. The compounds were predicted druglike and blood-brain barrier (BBB) penetrant in silico. Contrary to what was expected, the compounds showed no in vitro affinity to GABAA receptors (GABAARs) in radioligand binding assays; however, they were found structurally similar to peroxisome proliferator-activated receptors alpha (PPAR-α) agonists and predicted to show high affinity and agonist-like binding to PPAR-α in molecular docking studies. As a result, 5f emerged as a safe azole anticonvulsant with a wide therapeutic window and possible action through PPAR-α activation.


Anticonvulsants , Azoles , Mice , Animals , Anticonvulsants/pharmacology , Seizures/drug therapy , Molecular Docking Simulation , PPAR alpha , gamma-Aminobutyric Acid , Esters , Structure-Activity Relationship
16.
Rev Mal Respir ; 41(4): 283-288, 2024 Apr.
Article Fr | MEDLINE | ID: mdl-38458868

Aspergillus fumigatus is the predominant fungal species causing pulmonary aspergillosis. The present-day anti-aspergillosis arsenal is limited, with a number of molecules occasioning severe side effects (amphotericin B) or provoking significant drug interactions (azole derivatives). Moreover, the recent emergence of azole-resistant A. fumigatus strains is a cause for concern. In this context, antimicrobial peptides (AMPs) are emerging as a promising therapeutic approach and alternative or complement to conventional antifungals.


Antimicrobial Peptides , Aspergillosis , Humans , Drug Resistance, Fungal , Aspergillosis/drug therapy , Aspergillosis/microbiology , Antifungal Agents/therapeutic use , Azoles/therapeutic use , Microbial Sensitivity Tests
17.
Sci Total Environ ; 926: 171771, 2024 May 20.
Article En | MEDLINE | ID: mdl-38521260

Assessing the interactions between environmental pollutants and these mixtures is of paramount significance in understanding their negative effects on aquatic ecosystems. However, existing research often lacks comprehensive investigations into the physiological and biochemical mechanisms underlying these interactions. This study aimed to reveal the toxic mechanisms of cyproconazole (CYP), imazalil (IMA), and prochloraz (PRO) and corresponding these mixtures on Auxenochlorella pyrenoidosa by analyzing the interactions at physiological and biochemical levels. Higher concentrations of CYP, IMA, and PRO and these mixtures resulted in a reduction in chlorophyll (Chl) content and increased total protein (TP) suppression, and malondialdehyde (MDA) content exhibited a negative correlation with algal growth. The activity of catalase (CAT) and superoxide dismutase (SOD) decreased with increasing azole fungicides and their mixture concentrations, correlating positively with growth inhibition. Azole fungicides induced dose-dependent apoptosis in A. pyrenoidosa, with higher apoptosis rates indicative of greater pollutant toxicity. The results revealed concentration-dependent toxicity effects, with antagonistic interactions at low concentrations and synergistic effects at high concentrations within the CYP-IMA mixtures. These interactions were closely linked to the interactions observed in Chl-a, carotenoid (Car), CAT, and cellular apoptosis. The antagonistic effects of CYP-PRO mixtures on A. pyrenoidosa growth inhibition can be attributed to the antagonism observed in Chl-a, Chl-b, Car, TP, CAT, SOD, and cellular apoptosis. This study emphasized the importance of gaining a comprehensive understanding of the physiological and biochemical interactions within algal cells, which may help understand the potential mechanism of toxic interaction.


Chlorophyta , Fungicides, Industrial , Water Pollutants, Chemical , Fungicides, Industrial/toxicity , Azoles/toxicity , Ecosystem , Chlorophyta/metabolism , Chlorophyll A , Superoxide Dismutase/metabolism , Water Pollutants, Chemical/toxicity
18.
Mycoses ; 67(3): e13704, 2024 Mar.
Article En | MEDLINE | ID: mdl-38429226

BACKGROUND: Meyerozyma guilliermondii is a yeast species responsible for invasive fungal infections. It has high minimum inhibitory concentrations (MICs) to echinocandins, the first-line treatment of candidemia. In this context, azole antifungal agents are frequently used. However, in recent years, a number of azole-resistant strains have been described. Their mechanisms of resistance are currently poorly studied. OBJECTIVE: The aim of this study was consequently to understand the mechanisms of azole resistance in several clinical isolates of M. guilliermondii. METHODS: Ten isolates of M. guilliermondii and the ATCC 6260 reference strain were studied. MICs of azoles were determined first. Whole genome sequencing of the isolates was then carried out and the mutations identified in ERG11 were expressed in a CTG clade yeast model (C. lusitaniae). RNA expression of ERG11, MDR1 and CDR1 was evaluated by quantitative PCR. A phylogenic analysis was developed and performed on M. guilliermondii isolates. Lastly, in vitro experiments on fitness cost and virulence were carried out. RESULTS: Of the ten isolates tested, three showed pan-azole resistance. A combination of F126L and L505F mutations in Erg11 was highlighted in these three isolates. Interestingly, a combination of these two mutations was necessary to confer azole resistance. An overexpression of the Cdr1 efflux pump was also evidenced in one strain. Moreover, the three pan-azole-resistant isolates were shown to be genetically related and not associated with a fitness cost or a lower virulence, suggesting a possible clonal transmission. CONCLUSION: In conclusion, this study identified an original combination of ERG11 mutations responsible for pan-azole-resistance in M. guilliermondii. Moreover, we proposed a new MLST analysis for M. guilliermondii that identified possible clonal transmission of pan-azole-resistant strains. Future studies are needed to investigate the distribution of this clone in hospital environment and should lead to the reconsideration of the treatment for this species.


Azoles , Drug Resistance, Fungal , Saccharomycetales , Humans , Azoles/pharmacology , Multilocus Sequence Typing , Drug Resistance, Fungal/genetics , Antifungal Agents/pharmacology , Mutation , Microbial Sensitivity Tests , Fluconazole/pharmacology
19.
J Med Chem ; 67(6): 4298-4321, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38470824

The progressive increase in fungal infections and the decrease in the effectiveness of current therapy explain research on new drugs. The synthesis of compounds with proven antifungal activity, favorable physicochemical and pharmacokinetic properties affecting their pharmaceutical availability and bioavailability, and limiting or eliminating side effects has become the goal of many studies. The publication describes the directions of searching for new compounds with antifungal activity, focusing on conjugates. The described modifications include, among others, azoles or amphotericin B in combination with fatty acids, polysaccharides, proteins, and synthetic polymers. The benefits of these combinations in terms of activity, mechanism of action, and bioavailability were indicated. The possibilities of creating or using nanoparticles, "umbrella" conjugates, siderophores (iron-chelating compounds), and monoclonal antibodies were also presented. Taking into account the role of vaccinations in prevention, the scope of research related to developing a vaccine protecting against fungal infections was also indicated.


Antifungal Agents , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Antifungal Agents/chemistry , Amphotericin B , Mycoses/drug therapy , Azoles/therapeutic use , Fatty Acids
20.
Chemosphere ; 354: 141713, 2024 Apr.
Article En | MEDLINE | ID: mdl-38490613

Historical pesticide use in agriculture and trace metal accumulation have long term impact on soil, sediment, and water quality. This research quantifies legacy and current-use pesticides and trace metals, assessing their occurrence and toxicological implications on a watershed scale in the Sogamoso River basin, tributary of the Magdalena River in Colombia. Organochlorine pesticides (22), organophosphates (7), and azole fungicides (5), as well as trace metals cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), and zinc (Zn) were analyzed in croplands and along the river. Toxic units (TU) and hazard quotients (HQ) were calculated to assess the mixture toxicity. Organochlorines were detected in 84% of soils, 100% of sediments, and 80% of water samples. Organophosphates were found in 100% of soil and sediment samples, as well as in 70% of water samples. Azole fungicides were present in 79% of soils, 60% of sediments, and in 10% of water samples. Total pesticide concentrations ranged from 214.2 to 8497.7 µg/kg in soils, 569.6-12768.2 µg/kg in sediments, and 0.2-4.1 µg/L in water. In addition, the use of partition coefficient (Kd) and organic carbon fraction (foc) allowed the distribution analysis for most of the pesticides in sediments, suspended particulate matter (SPM), and water systems, but not for soils. Concentrations of trace metals Cu, Zn, Pb, and Zn exceeded international quality guidelines for agricultural soils in 16% of the samples. Furthermore, Cu and Zn concentrations exceeded sediment quality guidelines in 50 and 90% of the samples, respectively. These findings demonstrate the broad distribution of complex mixtures of trace metals, legacy organochlorines, and current-use pesticides across the basin, indicating that conventional agriculture is a significant source of diffuse pollution. Sustainable agricultural practices are needed to mitigate adverse impacts on ecosystems and human health.


Fungicides, Industrial , Metals, Heavy , Pesticides , Trace Elements , Humans , Soil , Metals, Heavy/analysis , Pesticides/analysis , Ecosystem , Rivers , Fungicides, Industrial/analysis , Colombia , Lead/analysis , Environmental Monitoring , Trace Elements/analysis , Agriculture , Zinc/analysis , Azoles/analysis , Organophosphates , Geologic Sediments , Risk Assessment , China
...